Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
BMC Neurol ; 22(1): 185, 2022 May 18.
Article in English | MEDLINE | ID: covidwho-1951107

ABSTRACT

BACKGROUND: Since the beginning of the COVID-19 pandemic and development of new vaccines, the issue of post-vaccination exacerbation or manifestation of demyelinating central nervous system (CNS) disorders has gained increasing attention. CASE PRESENTATION: We present a case of a 68-year-old woman previously diagnosed with multiple sclerosis (MS) since the 1980s who suffered a rapidly progressive severe sensorimotor paraparesis with loss of bladder and bowel control due to an acute longitudinal extensive transverse myelitis (LETM) after immunization with the mRNA Pfizer-BioNTech COVID-19 vaccine. Detection of Aquaporin-4-antibodies (AQP4) in both serum and CSF led to diagnosis of AQP4-antibody positive neuromyelitis optica spectrum disorder (NMOSD). Treatment with intravenous corticosteroids and plasmapheresis led to a slight improvement of the patient's symptoms. CONCLUSIONS: Pathogenic mechanisms of post-vaccination occurrence of NMOSD are still unknown. However, cases like this should make aware of rare neurological disorders manifesting after vaccination and potentially contribute to improvement of management of vaccinating patients with inflammatory CNS disorders in the future. So far two cases of AQP4-antibody positive NMOSD have been reported in association with viral vector COVID-19 vaccines. To our knowledge, we report the first case of AQP4-antibody positive NMOSD after immunization with an mRNA COVID-19-vaccine.


Subject(s)
BNT162 Vaccine , COVID-19 , Multiple Sclerosis , Myelitis, Transverse , Neuromyelitis Optica , Aged , Aquaporin 4/blood , Aquaporin 4/cerebrospinal fluid , Autoantibodies/blood , Autoantibodies/cerebrospinal fluid , BNT162 Vaccine/adverse effects , BNT162 Vaccine/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Disease Progression , Female , Humans , Multiple Sclerosis/blood , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/complications , Myelitis, Transverse/chemically induced , Myelitis, Transverse/diagnosis , Myelitis, Transverse/etiology , Neuromyelitis Optica/blood , Neuromyelitis Optica/cerebrospinal fluid , Neuromyelitis Optica/diagnosis , Neuromyelitis Optica/etiology , Pandemics , RNA, Messenger , Vaccination/adverse effects
2.
JAMA Neurol ; 78(12): 1503-1509, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1482083

ABSTRACT

Importance: Neuropsychiatric manifestations of COVID-19 have been reported in the pediatric population. Objective: To determine whether anti-SARS-CoV-2 and autoreactive antibodies are present in the cerebrospinal fluid (CSF) of pediatric patients with COVID-19 and subacute neuropsychiatric dysfunction. Design, Setting, and Participants: This case series includes 3 patients with recent SARS-CoV-2 infection as confirmed by reverse transcriptase-polymerase chain reaction or IgG serology with recent exposure history who were hospitalized at the University of California, San Francisco Benioff Children's Hospital and for whom a neurology consultation was requested over a 5-month period in 2020. During this period, 18 total children were hospitalized and tested positive for acute SARS-CoV-2 infection by reverse transcriptase-polymerase chain reaction or rapid antigen test. Main Outcomes and Measures: Detection and characterization of CSF anti-SARS-CoV-2 IgG and antineural antibodies. Results: Of 3 included teenaged patients, 2 patients had intrathecal anti-SARS-CoV-2 antibodies. CSF IgG from these 2 patients also indicated antineural autoantibodies on anatomic immunostaining. Autoantibodies targeting transcription factor 4 (TCF4) in 1 patient who appeared to have a robust response to immunotherapy were also validated. Conclusions and Relevance: Pediatric patients with COVID-19 and prominent subacute neuropsychiatric symptoms, ranging from severe anxiety to delusional psychosis, may have anti-SARS-CoV-2 and antineural antibodies in their CSF and may respond to immunotherapy.


Subject(s)
Antibodies, Viral/cerebrospinal fluid , Autoantibodies/cerebrospinal fluid , COVID-19/complications , COVID-19/immunology , Mental Disorders/cerebrospinal fluid , Mental Disorders/etiology , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/etiology , Adolescent , Animals , Anxiety/etiology , Anxiety/psychology , Autoimmunity , Female , Humans , Male , Marijuana Smoking/immunology , Mice , Movement Disorders/etiology , Neurologic Examination , Transcription Factor 4/immunology
3.
Neurol Neuroimmunol Neuroinflamm ; 7(6)2020 11.
Article in English | MEDLINE | ID: covidwho-1105773

ABSTRACT

OBJECTIVE: To investigate the pathophysiologic mechanism of encephalopathy and prolonged comatose or stuporous state in severally ill patients with coronavirus disease 2019 (COVID-19). METHODS: Eight COVID-19 patients with signs of encephalopathy were tested for antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the serum and CSF using a Food and Drug Administration-approved and independently validated ELISA. Blood-brain barrier (BBB) integrity and immunoglobulin G (IgG) intrathecal synthesis were further tested using albumin and IgG indices. The CSF was also tested for autoimmune encephalitis antibodies and 14-3-3, a marker of ongoing neurodegeneration. RESULTS: All patients had anti-SARS-CoV-2 antibodies in their CSF, and 4 of 8 patients had high titers, comparable to high serum values. One patient had anti-SARS-CoV-2 IgG intrathecal synthesis, and 3 others had disruption of the blood-brain barrier. The CSF in 4 patients was positive for 14-3-3-protein suggesting ongoing neurodegeneration. In all patients, the CSF was negative for autoimmune encephalitis antibodies and SARS-CoV-2 by PCR. None of the patients, apart from persistent encephalopathic signs, had any focal neurologic signs or history or specific neurologic disease. CONCLUSIONS: High-titer anti-SARS-CoV-2 antibodies were detected in the CSF of comatose or encephalopathic patients demonstrating intrathecal IgG synthesis or BBB disruption. A disrupted BBB may facilitate the entry of cytokines and inflammatory mediators into the CNS enhancing neuroinflammation and neurodegeneration. The observations highlight the need for prospective CSF studies to determine the pathogenic role of anti-SARS-CoV-2 antibodies and identify early therapeutic interventions.


Subject(s)
Autoantibodies/cerebrospinal fluid , Betacoronavirus/isolation & purification , Blood-Brain Barrier/metabolism , Coma/cerebrospinal fluid , Coronavirus Infections/cerebrospinal fluid , Nervous System Diseases/cerebrospinal fluid , Pneumonia, Viral/cerebrospinal fluid , Stupor/cerebrospinal fluid , Aged , Aged, 80 and over , Biomarkers/cerebrospinal fluid , COVID-19 , Coma/diagnosis , Coronavirus Infections/diagnosis , Female , Humans , Male , Middle Aged , Nervous System Diseases/diagnosis , Pandemics , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Stupor/diagnosis , Treatment Outcome
5.
Brain Behav Immun ; 93: 415-419, 2021 03.
Article in English | MEDLINE | ID: covidwho-987109

ABSTRACT

BACKGROUND: COVID-19 intensive care patients can present with neurological syndromes, usually in the absence of SARS-CoV-2 in cerebrospinal fluid (CSF). The recent finding of some virus-neutralizing antibodies cross-reacting with brain tissue suggests the possible involvement of specific autoimmunity. DESIGN: Blood and CSF samples from eleven critically ill COVID-19 patients presenting with unexplained neurological symptoms including myoclonus, oculomotor disturbance, delirium, dystonia and epileptic seizures, were analyzed for anti-neuronal and anti-glial autoantibodies. RESULTS: Using cell-based assays and indirect immunofluorescence on unfixed murine brain sections, all patients showed anti-neuronal autoantibodies in serum or CSF. Antigens included intracellular and neuronal surface proteins, such as Yo or NMDA receptor, but also various specific undetermined epitopes, reminiscent of the brain tissue binding observed with certain human monoclonal SARS-CoV-2 antibodies. These included vessel endothelium, astrocytic proteins and neuropil of basal ganglia, hippocampus or olfactory bulb. CONCLUSION: The high frequency of autoantibodies targeting the brain in the absence of other explanations suggests a causal relationship to clinical symptoms, in particular to hyperexcitability (myoclonus, seizures). Several underlying autoantigens and their potential molecular mimicry with SARS-CoV-2 still await identification. However, autoantibodies may already now explain some aspects of multi-organ disease in COVID-19 and can guide immunotherapy in selected cases.


Subject(s)
Autoantibodies/cerebrospinal fluid , COVID-19/cerebrospinal fluid , Central Nervous System Diseases/virology , Aged , Autoantigens , Autoimmunity , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL